organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[3-((*Z*)-2-{4-[Bis(2-chloroethyl)amino]phenyl}ethenyl)-5,5-dimethylcyclohex-2en-1-ylidene]propanedinitrile

Li Liu,^a Ying Shao,^b Jie-Ping Shi,^a Hong-Wen Hu^a and Guo-Yuan Lu^a*

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 Jiangsu, People's Republic of China, and ^bKey Laboratory of Fine Chemical Engineering, Changzhou University, Changzhou 213164 Jiangsu, People's Republic of China Correspondence e-mail: lugyuan@yahoo.com.cn

Received 1 September 2010; accepted 6 December 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.149; data-to-parameter ratio = 14.6.

The highly conjugated title compound, $C_{23}H_{25}Cl_2N_3$, is nearly planar (the mean deviation from the plane being 0.049 Å), except for the $-C(CH_3)_2$ group on the cyclohexene ring and the two CH₂Cl groups. The cyclohexene ring has an envelope configuration. In the crystal, the packing is stabilized by C– $H \cdots Cl$ interactions and C– $H \cdots \pi$ interactions involving the benzene ring.

Related literature

The title compound was prepared by the Knoevenagel reaction, see: Bai *et al.* (2006); Samyn *et al.* (2001). It is an intermediate for the preparation of non-linear optical materials, see: Kwon *et al.* (2006); Shu *et al.* (1998); Chun *et al.* (2001); Zheng *et al.* (2000). For a related structure, see Kolev *et al.* (2005).

Experimental

Crystal data $C_{23}H_{25}Cl_2N_3$ $M_r = 414.36$

Triclinic, $P\overline{1}$ a = 9.106 (7) Å

b = 10.819 (9) A	
c = 13.325 (4) Å	
$\alpha = 70.052 \ (6)^{\circ}$	
$\beta = 70.02 \ (1)^{\circ}$	
$\gamma = 65.11 \ (1)^{\circ}$	
$V = 1088.8 (13) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector	5376 measured reflections
diffractometer	3695 independent reflections
Absorption correction: multi-scan	3130 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.108$
$T_{\min} = 0.926, \ T_{\max} = 0.955$	

Z = 2

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.15~\text{mm}$

 $\mu = 0.31 \text{ mm}^{-1}$

T = 295 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	253 parameters
$wR(F^2) = 0.149$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
3695 reflections	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C11-C16 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C18-H18B\cdots Cl1B^{i}$ $C4-H4A\cdots Cg1^{ii}$	0.97 0.97	2.91 2.55	3.822 (2) 3.459 (2)	158 156
Summation and an (3) and	2			

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 2, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (research grant No. 20774039).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2317).

References

- Bai, Z., Zhang, C.-Z., Lu, G.-Y. & Liu, F. (2006). Chin. J. Chem. 24, 124–128. Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chun, H., Moon, I. K., Shin, D. H. & Kim, N. (2001). Chem. Mater. 13, 2813–2817.
- Kolev, T., Yancheva, D., Shivachev, B., Petrova, R. & Spiteller, M. (2005). Acta Cryst. E61, 0550–0552.
- Kwon, O.-P., Ruiz, B., Choubey, A., Mutter, L., Schneider, A., Jazbinsek, M., Gramlich, V. & Gunter, P. (2006). *Chem. Mater.* 18, 4049–4054.
- Samyn, C., Ballet, W., Verbiest, T., Beylen, M. & Persoons, A. (2001). *Polymer*, **42**, 8511–8516.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shu, C.-F., Shu, Y.-C. & Gong, Z.-H. (1998). Chem. Mater. 10, 3284–3286.
- Zheng, Q. D., Yao, Z. G., Cheng, J. Q., Shen, Y. C. & Lu, Z. H. (2000). *Chem. Lett.* **12**, 1426–1427.

Acta Cryst. (2011). E67, o124 [doi:10.1107/S1600536810051068]

2-[3-((*Z*)-2-{4-[Bis(2-chloroethyl)amino]phenyl}ethenyl)-5,5-dimethylcyclohex-2-en-1-ylidene]propanedinitrile

L. Liu, Y. Shao, J.-P. Shi, H.-W. Hu and G.-Y. Lu

Comment

The title compound, (I), was prepared by the Knoevenagel reaction (Bai *et al.*, 2006; Samyn *et al.*, 2001). With a donor- π -acceptor (D- π -A) structure, it is one of the important intermediates used in nonlinear optical materials (Kwon *et al.*, 2006; Shu *et al.*, 1998; Chun *et al.*, 2001; Zheng *et al.*, 2000). We now report the structure (I) (Fig. 1). The C—N1 bond length is shorter than a normal single C—N bond (1.47–1.50 Å) and longer than a double C=N bond distance (1.34–1.38 Å) which is due to the *p*- π conjugation in the phenyl amine group. Because of the extended conjugation, almost all atoms in the molecule are roughly coplanar, except for the C(CH₃)₂ and CH₂Cl groups. The cyclohexene ring adopts an envelope configuration due to its ring tension, with atom C3 deviating by 0.635 (2) Å from the mean plane through the remaining atoms. The CH₂Cl groups are on opposite sides of the plane, the N—C—C—Cl torsion angles are 64.5 (2)° for Cl1—C18—C17—N1 and 173.0 (1)° for Cl2—C20—C19—N1. The structure of a related compound having a diphenyl group instead of the chloroethyl moiety has been reported (Kolev *et al.*, 2005). In the crystal structure of (I), no hydrogen bonding is found. The crystal packing is stabilized by C—H···Cl interactions and C—H··· π interactions involving the benzene ring (Table 1, Fig. 2). For the C—H··· π interactions, the relevant distances and angles are: C··· $Cg^{[i]} = 3.459$ (4) Å, H··· $Cg^{[i]} = 2.548$ (2)Å and C—H··· $\pi^{[i]} = 156$ (1)° [symmetry code: (i) 2 - *x*, 2 - *y*, 1 - *z*].

Experimental

To a solution of 4-(bis(2-chloroethyl)amino)benzaldehyde (1.0 g, 4.1 mmol) in 10 ml anhydrous DMF, 2-(3,5,5-trimethylcyclohex-2-enylidene)malononitrile (0.93 g, 5.0 mmol), 0.5 ml acetic acid, 1 ml piperidine were added, respectively. The reaction mixture was stirred for 2 days at room temperature. Then, the mixture was poured into 50 ml of water and filtered. The resulting solid was purified by column chromatography (petroleum ether/acetic ester, 5:1). Red product 0.24 g was obtained. Yield: 14.2%. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the eluate.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound, showing the labeling of the non-H atoms and 50% probability ellipsoids.

Fig. 2. Tetrameric subunits linked by C—H···Cl and C—H··· π interactions in the title compound. H atoms not involved in short contacts have been omitted for clarity.

2-[3-((Z)-2-{4-[Bis(2-chloroethyl)amino]phenyl}ethenyl)-5,5- dimethylcyclohex-2-en-1-ylidene]propanedinitrile

Crystal data	
C ₂₃ H ₂₅ Cl ₂ N ₃	Z = 2
$M_r = 414.36$	F(000) = 436
Triclinic, <i>P</i> T	$D_{\rm x} = 1.264 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 462(2) K
a = 9.106 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>b</i> = 10.819 (9) Å	Cell parameters from 3172 reflections
c = 13.325 (4) Å	$\theta = 2.4 - 28.3^{\circ}$
$\alpha = 70.052 \ (6)^{\circ}$	$\mu = 0.31 \text{ mm}^{-1}$
$\beta = 70.02 \ (1)^{\circ}$	T = 295 K
$\gamma = 65.11 \ (1)^{\circ}$	Block, red
$V = 1088.8 (13) \text{ Å}^3$	$0.25\times0.20\times0.15~mm$

Data collection

Radiation source: fine-focus sealed tube 3130 reflections with $I > 2\sigma(I)$ graphite $R_{int} = 0.108$ phi and ω scans $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.7^{\circ}$
graphite $R_{int} = 0.108$ phi and ω scans $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.7^{\circ}$
phi and ω scans $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.7^{\circ}$
F i i i i i i i i i i i i i i i i i i i
Absorption correction: multi-scan $h = -10 \rightarrow 9$ (<i>SADABS</i> ; Bruker, 2000)
$T_{\min} = 0.926, T_{\max} = 0.955$ $k = -12 \rightarrow 12$
5376 measured reflections $l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$wR(F^2) = 0.149$ H-atom parameters constrained $S = 1.08$ $w = 1/[\sigma^2(F_o^2) + (0.0923P)^2 + 0.0577P]$ 3695 reflections $(\Delta/\sigma)_{max} < 0.001$ 253 parameters $\Delta\rho_{max} = 0.40$ e Å ⁻³ 0 restraints $\Delta\rho_{min} = -0.45$ e Å ⁻³	$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from neighbouring sites
$S = 1.08 \qquad \qquad w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0923P)^{2} + 0.0577P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ 3695 reflections $(\Delta/\sigma)_{max} < 0.001$ 253 parameters $\Delta\rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$ 0 restraints $\Delta\rho_{min} = -0.45 \text{ e} \text{ Å}^{-3}$	$wR(F^2) = 0.149$	H-atom parameters constrained
3695 reflections $(\Delta/\sigma)_{max} < 0.001$ 253 parameters $\Delta\rho_{max} = 0.40 \text{ e Å}^{-3}$ 0 restraints $\Delta\rho_{min} = -0.45 \text{ e Å}^{-3}$	<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0923P)^2 + 0.0577P]$ where $P = (F_o^2 + 2F_c^2)/3$
253 parameters $\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$ 0 restraints $\Delta \rho_{min} = -0.45 \text{ e} \text{ Å}^{-3}$	3695 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints $\Delta \rho_{min} = -0.45 \text{ e} \text{ Å}^{-3}$	253 parameters	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
	0 restraints	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	auivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1		000.000000		011.0010	0. 00	100000000000000000000000000000000000000	1001.00		p		(/

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
C11	0.94296 (7)	0.45978 (6)	0.17603 (5)	0.0391 (2)
C12	1.69804 (7)	0.19448 (6)	0.30464 (5)	0.0455 (2)
N1	1.2573 (2)	0.45672 (17)	0.23659 (13)	0.0238 (4)
C6	0.8407 (2)	0.95499 (19)	0.75122 (15)	0.0215 (4)
H6A	0.9244	0.8771	0.7786	0.026*
C7	0.8134 (2)	0.9638 (2)	0.65538 (15)	0.0208 (4)
C14	1.1692 (2)	0.55189 (19)	0.30229 (15)	0.0216 (4)
C5	0.7456 (2)	1.0609 (2)	0.81253 (15)	0.0210 (4)
C12	0.9649 (2)	0.7739 (2)	0.33495 (16)	0.0231 (4)
H12A	0.8866	0.8586	0.3097	0.028*
C10	0.9014 (2)	0.8540 (2)	0.50045 (16)	0.0224 (4)
H10A	0.8225	0.9330	0.4692	0.027*
C16	1.1131 (2)	0.6197 (2)	0.47076 (16)	0.0229 (4)
H16A	1.1352	0.5974	0.5392	0.027*
C11	0.9938 (2)	0.7485 (2)	0.43735 (15)	0.0215 (4)
С9	0.9138 (2)	0.8536 (2)	0.59796 (16)	0.0222 (4)
H9A	0.9928	0.7767	0.6308	0.027*
C13	1.0470 (2)	0.6794 (2)	0.26958 (15)	0.0231 (4)
H13	1.0211	0.7003	0.2026	0.028*
C21	0.7696 (2)	1.0458 (2)	0.91198 (16)	0.0240 (4)
C23	0.6733 (3)	1.1514 (2)	0.97320 (16)	0.0281 (5)
C15	1.1987 (2)	0.5248 (2)	0.40534 (16)	0.0229 (4)
H15A	1.2781	0.4407	0.4302	0.028*
C4	0.6212 (2)	1.1924 (2)	0.76371 (16)	0.0238 (4)

H4A	0.6762	1.2596	0.7189	0.029*
H4B	0.5353	1.2329	0.8223	0.029*
C19	1.3873 (2)	0.3277 (2)	0.27018 (16)	0.0241 (4)
H19A	1.4040	0.2599	0.2312	0.029*
H19B	1.3531	0.2894	0.3481	0.029*
N3	0.5935 (3)	1.2370 (2)	1.02102 (15)	0.0399 (5)
C8	0.6800(2)	1.0893 (2)	0.60875 (16)	0.0252 (4)
H8A	0.6307	1.0594	0.5713	0.030*
H8B	0.7312	1.1548	0.5544	0.030*
C3	0.5410 (2)	1.1659 (2)	0.69367 (16)	0.0236 (4)
C17	1.2492 (3)	0.4899 (2)	0.12292 (16)	0.0261 (5)
H17A	1.3614	0.4675	0.0772	0.031*
H17B	1.1921	0.5898	0.1000	0.031*
C18	1.1606 (3)	0.4119 (2)	0.10506 (18)	0.0323 (5)
H18A	1.2152	0.3121	0.1304	0.039*
H18B	1.1691	0.4308	0.0271	0.039*
N2	0.9835 (3)	0.8257 (2)	0.99930 (16)	0.0436 (5)
C22	0.8897 (3)	0.9239 (2)	0.96049 (16)	0.0290 (5)
C20	1.5502 (2)	0.3513 (2)	0.24686 (18)	0.0286 (5)
H20A	1.5316	0.4267	0.2785	0.034*
H20B	1.5926	0.3778	0.1682	0.034*
C1	0.4348 (3)	1.3060 (2)	0.63482 (18)	0.0342 (5)
H1A	0.5036	1.3608	0.5891	0.051*
H1B	0.3498	1.3553	0.6880	0.051*
H1C	0.3839	1.2901	0.5902	0.051*
C2	0.4306 (3)	1.0779 (2)	0.76748 (19)	0.0338 (5)
H2A	0.3449	1.1278	0.8200	0.051*
H2B	0.4975	0.9902	0.8053	0.051*
H2C	0.3807	1.0607	0.7231	0.051*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0324 (3)	0.0429 (4)	0.0442 (4)	-0.0126 (3)	-0.0161 (3)	-0.0062 (3)
Cl2	0.0276 (3)	0.0419 (4)	0.0561 (4)	-0.0014 (3)	-0.0205 (3)	-0.0012 (3)
N1	0.0230 (9)	0.0203 (8)	0.0260 (9)	-0.0007 (7)	-0.0093 (7)	-0.0077 (7)
C6	0.0148 (9)	0.0188 (9)	0.0262 (10)	-0.0013 (8)	-0.0050 (8)	-0.0051 (8)
C7	0.0155 (9)	0.0237 (10)	0.0215 (10)	-0.0078 (8)	-0.0010 (8)	-0.0052 (8)
C14	0.0192 (10)	0.0201 (10)	0.0264 (11)	-0.0076 (8)	-0.0039 (8)	-0.0066 (8)
C5	0.0155 (9)	0.0218 (10)	0.0230 (10)	-0.0066 (8)	-0.0007 (8)	-0.0054 (8)
C12	0.0176 (9)	0.0205 (10)	0.0306 (11)	-0.0027 (8)	-0.0090 (8)	-0.0068 (8)
C10	0.0168 (9)	0.0211 (10)	0.0279 (11)	-0.0054 (8)	-0.0036 (8)	-0.0069 (8)
C16	0.0228 (10)	0.0234 (10)	0.0207 (10)	-0.0066 (8)	-0.0051 (8)	-0.0048 (8)
C11	0.0166 (9)	0.0226 (10)	0.0245 (10)	-0.0068 (8)	-0.0030 (8)	-0.0062 (8)
C9	0.0144 (9)	0.0228 (10)	0.0251 (10)	-0.0034 (8)	-0.0035 (8)	-0.0055 (8)
C13	0.0203 (10)	0.0258 (10)	0.0229 (10)	-0.0040 (8)	-0.0089 (8)	-0.0066 (8)
C21	0.0236 (10)	0.0220 (10)	0.0227 (10)	-0.0050 (8)	-0.0049 (8)	-0.0049 (8)
C23	0.0296 (11)	0.0281 (11)	0.0225 (10)	-0.0079 (9)	-0.0051 (9)	-0.0048 (9)

C15	0.0199 (10)	0.0184 (10)	0.0255 (10)	-0.0037 (8)	-0.0084 (8)	0.0002 (8)
C4	0.0214 (10)	0.0216 (10)	0.0242 (10)	-0.0032 (8)	-0.0037 (8)	-0.0072 (8)
C19	0.0236 (10)	0.0188 (10)	0.0275 (10)	-0.0040 (8)	-0.0065 (8)	-0.0064 (8)
N3	0.0463 (12)	0.0337 (11)	0.0319 (10)	-0.0050 (9)	-0.0035 (9)	-0.0153 (9)
C8	0.0226 (10)	0.0261 (10)	0.0257 (10)	-0.0040 (9)	-0.0081 (8)	-0.0076 (8)
C3	0.0169 (9)	0.0238 (10)	0.0255 (10)	-0.0028 (8)	-0.0058 (8)	-0.0047 (8)
C17	0.0270 (10)	0.0221 (10)	0.0248 (10)	-0.0039 (9)	-0.0059 (9)	-0.0060 (8)
C18	0.0338 (12)	0.0320 (11)	0.0313 (11)	-0.0044 (10)	-0.0137 (10)	-0.0105 (9)
N2	0.0468 (12)	0.0374 (11)	0.0357 (11)	0.0032 (10)	-0.0214 (10)	-0.0062 (9)
C22	0.0338 (12)	0.0310 (12)	0.0206 (10)	-0.0080 (10)	-0.0058 (9)	-0.0085 (9)
C20	0.0230 (10)	0.0258 (11)	0.0326 (11)	-0.0032 (9)	-0.0097 (9)	-0.0048 (9)
C1	0.0275 (11)	0.0303 (12)	0.0360 (12)	0.0020 (9)	-0.0116 (10)	-0.0081 (10)
C2	0.0190 (10)	0.0352 (12)	0.0431 (13)	-0.0079 (9)	-0.0035 (9)	-0.0097 (10)

Geometric parameters (Å, °)

Cl1—C18	1.811 (3)	C23—N3	1.146 (3)
Cl2—C20	1.783 (2)	C15—H15A	0.9300
N1-C14	1.382 (3)	C4—C3	1.520 (3)
N1—C19	1.448 (2)	C4—H4A	0.9700
N1—C17	1.453 (2)	C4—H4B	0.9700
C6—C7	1.347 (3)	C19—C20	1.520 (3)
C6—C5	1.432 (3)	C19—H19A	0.9700
С6—Н6А	0.9300	С19—Н19В	0.9700
С7—С9	1.438 (3)	C8—C3	1.532 (3)
С7—С8	1.503 (3)	C8—H8A	0.9700
C14—C15	1.398 (3)	C8—H8B	0.9700
C14—C13	1.400 (3)	C3—C1	1.523 (3)
C5—C21	1.360 (3)	C3—C2	1.542 (3)
C5—C4	1.499 (3)	C17—C18	1.504 (3)
C12—C13	1.372 (3)	C17—H17A	0.9700
C12—C11	1.391 (3)	С17—Н17В	0.9700
C12—H12A	0.9300	C18—H18A	0.9700
С10—С9	1.340 (3)	C18—H18B	0.9700
C10-C11	1.442 (3)	N2—C22	1.135 (3)
C10—H10A	0.9300	C20—H20A	0.9700
C16—C15	1.376 (3)	C20—H20B	0.9700
C16—C11	1.398 (3)	C1—H1A	0.9600
C16—H16A	0.9300	C1—H1B	0.9600
С9—Н9А	0.9300	C1—H1C	0.9600
С13—Н13	0.9300	C2—H2A	0.9600
C21—C22	1.428 (3)	C2—H2B	0.9600
C21—C23	1.430 (3)	C2—H2C	0.9600
C14—N1—C19	121.33 (16)	C20—C19—H19A	109.3
C14—N1—C17	122.58 (16)	N1—C19—H19B	109.3
C19—N1—C17	115.10 (15)	С20—С19—Н19В	109.3
C7—C6—C5	122.55 (17)	H19A—C19—H19B	108.0
С7—С6—Н6А	118.7	C7—C8—C3	114.66 (16)
С5—С6—Н6А	118.7	С7—С8—Н8А	108.6

C6—C7—C9	119.65 (17)	С3—С8—Н8А	108.6
C6—C7—C8	119.76 (17)	С7—С8—Н8В	108.6
C9—C7—C8	120.58 (16)	С3—С8—Н8В	108.6
N1—C14—C15	121.12 (17)	H8A—C8—H8B	107.6
N1-C14-C13	122.14 (17)	C4—C3—C1	108.99 (17)
C15—C14—C13	116.74 (17)	C4—C3—C8	108.14 (16)
C21—C5—C6	121.30 (18)	C1—C3—C8	109.44 (16)
C21—C5—C4	119.90 (17)	C4—C3—C2	109.59 (17)
C6—C5—C4	118.78 (16)	C1—C3—C2	109.60 (17)
C13—C12—C11	122.83 (18)	C8—C3—C2	111.03 (17)
C13—C12—H12A	118.6	N1-C17-C18	112.94 (17)
C11—C12—H12A	118.6	N1—C17—H17A	109.0
C9—C10—C11	128.83 (18)	С18—С17—Н17А	109.0
С9—С10—Н10А	115.6	N1—C17—H17B	109.0
C11—C10—H10A	115.6	C18—C17—H17B	109.0
C15-C16-C11	121.91 (18)	H17A—C17—H17B	107.8
C15-C16-H16A	119.0	C17—C18—Cl1	112.66 (15)
C11—C16—H16A	119.0	C17—C18—H18A	109.1
C12—C11—C16	115.97 (17)	Cl1—C18—H18A	109.1
C12—C11—C10	118.97 (17)	C17—C18—H18B	109.1
C16—C11—C10	125.06 (17)	Cl1—C18—H18B	109.1
C10C9C7	124.63 (18)	H18A—C18—H18B	107.8
С10—С9—Н9А	117.7	N2—C22—C21	178.7 (2)
С7—С9—Н9А	117.7	C19—C20—Cl2	109.49 (15)
C12-C13-C14	120.96 (17)	С19—С20—Н20А	109.8
С12—С13—Н13	119.5	Cl2—C20—H20A	109.8
C14—C13—H13	119.5	С19—С20—Н20В	109.8
C5—C21—C22	121.90 (18)	Cl2—C20—H20B	109.8
C5—C21—C23	121.02 (18)	H20A—C20—H20B	108.2
C22—C21—C23	117.08 (17)	C3—C1—H1A	109.5
N3—C23—C21	178.5 (2)	C3—C1—H1B	109.5
C16-C15-C14	121.56 (17)	H1A—C1—H1B	109.5
C16—C15—H15A	119.2	C3—C1—H1C	109.5
C14—C15—H15A	119.2	H1A—C1—H1C	109.5
C5—C4—C3	112.19 (16)	H1B—C1—H1C	109.5
C5—C4—H4A	109.2	С3—С2—Н2А	109.5
C3—C4—H4A	109.2	C3—C2—H2B	109.5
C5—C4—H4B	109.2	H2A—C2—H2B	109.5
C3—C4—H4B	109.2	C3—C2—H2C	109.5
H4A—C4—H4B	107.9	H2A—C2—H2C	109.5
N1-C19-C20	111.41 (16)	H2B—C2—H2C	109.5
N1-C19-H19A	109.3		
C5—C6—C7—C9	179.91 (16)	C6—C5—C21—C23	-179.48 (17)
C5—C6—C7—C8	0.6 (3)	C4—C5—C21—C23	2.4 (3)
C19—N1—C14—C15	-2.1 (3)	C11-C16-C15-C14	-0.8 (3)
C17—N1—C14—C15	-170.09 (17)	N1-C14-C15-C16	179.16 (17)
C19—N1—C14—C13	177.77 (17)	C13-C14-C15-C16	-0.7 (3)
C17—N1—C14—C13	9.8 (3)	C21—C5—C4—C3	-148.39 (18)
C7—C6—C5—C21	176.34 (18)	C6—C5—C4—C3	33.4 (2)

C7—C6—C5—C4	-5.5 (3)	C14—N1—C19—C20	-81.3 (2)
C13—C12—C11—C16	0.1 (3)	C17—N1—C19—C20	87.5 (2)
C13—C12—C11—C10	-179.90 (17)	C6—C7—C8—C3	-24.2 (3)
C15-C16-C11-C12	1.1 (3)	C9—C7—C8—C3	156.51 (17)
C15-C16-C11-C10	-178.87 (18)	C5—C4—C3—C1	-172.37 (16)
C9—C10—C11—C12	-177.25 (19)	C5—C4—C3—C8	-53.5 (2)
C9—C10—C11—C16	2.7 (3)	C5—C4—C3—C2	67.7 (2)
С11—С10—С9—С7	-179.01 (17)	C7—C8—C3—C4	49.7 (2)
C6—C7—C9—C10	-177.52 (18)	C7—C8—C3—C1	168.33 (16)
C8—C7—C9—C10	1.8 (3)	C7—C8—C3—C2	-70.5 (2)
C11—C12—C13—C14	-1.7 (3)	C14—N1—C17—C18	-110.7 (2)
N1-C14-C13-C12	-177.95 (18)	C19—N1—C17—C18	80.6 (2)
C15-C14-C13-C12	1.9 (3)	N1-C17-C18-Cl1	64.6 (2)
C6—C5—C21—C22	-0.2 (3)	N1-C19-C20-Cl2	172.98 (13)
C4—C5—C21—C22	-178.39 (18)		

Hydrogen-bond geometry (Å, °)

Cg1	is	the	centroid	of the	C11-	-C16 ring.
-----	----	-----	----------	--------	------	------------

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$	
C18—H18B···Cl1B ⁱ	0.97	2.91	3.822 (2)	158	
C4—H4A…Cg1 ⁱⁱ	0.97	2.55	3.459 (2)	156	
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$; (ii) $-x+2$, $-y+2$, $-z+1$.					

